# Formation of 1,4-diphosphinobenzenes via tele-substitution on fluorobenzenechromium complexes 

Yoshikazu Yamamoto, Hiroshi Danjo *, Kentaro Yamaguchi, Tsuneo Imamoto<br>Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

## A R T I C L E I N F O

## Article history:

Received 7 June 2008
Received in revised form 23 August 2008
Accepted 26 August 2008
Available online 31 August 2008

## Keywords:

P-chiral phosphines
Arenechromium complexes
meta-tele Substitution
SNAr reation


#### Abstract

The meta-tele-substitution of 2-(boranatophosphino)fluorobenzenechromium complexes took place with various lithiated secondary phosphine-boranes as nucleophiles to give para-substituted bis(boranatophosphino)benzenechromiums. It was revealed that the yield of the tele-substitution product was strongly affected by the strength of a proton acid. Isotope labeling experiments indicated that 1,5-hydrogen migration was involved in this transformation.


© 2008 Elsevier B.V. All rights reserved.

## 1. Introduction

Arenechromium complexes are important aryl cation equivalents and utilized in a great number of organic transformations [1]. In particular, fluoroarenechromium complexes are frequently employed owing to their unique reactivity and high accessibility. Recently, we have demonstrated that ortho-difluorobenzenetricarbonylchromium (1) could be used as a good intermediate for the synthesis of optically active P-chiral phosphinobenzenes. In these studies, a variety of ortho-substituted P-chiral monophosphines were obtained via stepwise $S_{N} A r$ reaction of 1 with a lithiated secondary P-chiral boranatophosphine and various nucleophiles (Eq. (1)) [2]. On the other hand, P-chiral ortho-diphosphinobenzenes could be prepared by the use of deprotonated bis(phosphine)boronium salts that consisted of two phosphino groups bound to each other through a boronium linkage [3]. This building block makes it possible to introduce two sterically hindered phosphino groups at proximal positions to each other. From these studies, we have shown that 1 reacted with lithiated ( $S$ )-tert-butyl(methyl)phos-phine-borane (2a) to afford a diastereomixture of 2-(boranato-tert-butyl(methyl)phosphino)fluorobenzenetricarbonylchromium $\left(\left(R_{\mathrm{P}}, S\right)\right.$-3a and $\left(R_{\mathrm{P}}, R\right)$-3a), and no bis(boranatophosphino)benzene chromium complexes could be detected under these reaction conditions. However, when this reaction was treated with an acid at low temperature, para-substituted bis(boranatophosphino)benzene chromium complex $(R, R)$-4aa was obtained as the main product (Scheme 1). This type of tele-substitution was previously reported

[^0]by Rose-Munch et al., in which 2-methyl-1,3-dithian-2-yl anion was introduced at the 3 -position of 2,6-dimethylfluorobenzenetricarbonylchromium [4]. Hong et al. have also studied a similar reaction using phenylacetylide anion as a nucleophile [5]. The attack of soft nucleophiles on fluoroarenechromium complexes that possess large substituents close to the fluoro group would tend to occur at tele-position to avoid the steric repulsion. Herein, we describe some examples of the meta-tele-substitution reaction of fluorobenzenechromium complexes with boranatophosphino nucleophiles, and discuss the mechanism of the reaction.


## 2. Results and discussion

Initially, we examined the substitution reaction using a 2 -boranatophosphinofluorobenzenechromium complex with lithiated


Scheme 1. The SNAr reaction of 1 with (S)-2a.

$\left(R_{P}, R\right)-3 \mathbf{a}$
Scheme 2. The meta-tele-substitution reaction of $\left(R_{\mathrm{P}}, S\right)$-, and $\left(R_{\mathrm{P}}, R\right)$-3a with $(S)$-2a.
phosphine-borane to confirm the formation of the tele-substitution product. Compound ( $R_{P}, S$ )-3a was treated with 1.1 equiv. of $(S)-\mathbf{2 a}$ at $-40^{\circ} \mathrm{C}$, and the reaction was quenched with 1 M HCl at intact temperature, and para-substituted product ( $R, R$ )-4aa was obtained in $36 \%$ yield (Scheme 2). It was also confirmed that the reactivity of $\left(R_{\mathrm{P}}, R\right)$-3a was similar to that of ( $R_{\mathrm{P}}, S$ )-3a ( $35 \%$ yield). On the other hand, deboranated ( $R_{\mathrm{P}}$ )-(2-tert-butylmethylphosphino)fluorobenzenechromium ( $\left.\left(R_{\mathrm{P}}\right)-\mathbf{5 a}\right)$ gave no coupling product under these reaction conditions, probably due to the electrondonating nature of the free phosphino group (Scheme 3) [2]. The absolute configurations of ( $R_{\mathrm{P}}, R$ )-3a and ( $R, R$ )-4aa have been unequivocally determined by single crystal X-ray analysis (Fig. 1). In each case, the two tert-butyl groups are oriented at opposite sides of the chromium group owing to their bulkiness. Especially in $\left(R_{P}, R\right)$-3a, the tert-butyl group shields the ipso-carbon attached to fluoro group to prevent $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ at this position. On the other hand, a nucleophilic attack at the meta-position to the fluoro group would be advantageous because of the stabilization of the Meisenheimer-type intermediate by boranatophosphino group, and would lead to the formation of para-disubstituted product.

Optimization of the reaction conditions was carried out with lithiated P-chiral secondary phosphine-borane ( $S$ )-2a and ortho-(dicyclohexylboranatophosphino)fluorobenzenetricarbonylchromium (3b, Cy: cyclohexyl). The results are summarized in Table 1. It is noted that the chemical yield of the coupling reaction was largely affected by the acid treatment [4]. When the reaction was quenched by excess amount of 1 M HCl at $0^{\circ} \mathrm{C}$ for 30 min , the yield was suppressed to $22 \%$. The use of 3.0 equiv. of trifluoromethanesulfonic acid instead of HCl produced coupling product in $44 \%$ yield. Moreover, further increase of the chemical yield (to 79\%) was realized when the acid treatment was carried out at $-78^{\circ} \mathrm{C}$ for 24 h . In each case, tele-substitution product could not be


Scheme 3. The SNAr reaction with $\left(R_{\mathrm{P}}\right)$-5a.
detected on TLC before treatment with an acid. When the reaction was treated with water instead of an acid, only starting material was recovered.

The meta-tele-substitution reaction of 2-(boranatophosphino)fluorobenzenechromium complexes was then carried out with various substrates and nucleophiles. The results are summarized in Table 2. In these reactions, 2-(boranatophosphino)fluorobenzenechromium complexes were treated with 3 equiv. of secondary phosphine-boranes that were previously deprotonated with secbutyllithium. The reactions were then quenched with trifluoromethanesulfonic acid at $-78^{\circ} \mathrm{C}$ for 24 h . The products were isolated after removal of the chromium group by UV irradiation in air. In almost all cases, moderate to high yields of 1,4 -bis(boranatophosphino)benzenes were obtained. When dicyclohexyl-phosphine-borane (2b) and di(tert-butyl)phosphine-borane (2f) were employed as nucleophiles, coupling products 6ab and 6af were afforded in $11 \%$ and $28 \%$ yields, respectively, probably owing to high steric hindrance of the nucleophiles.

To observe the features of this tele- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ process, the reaction was conducted by treatment of rac-5-D-3b (>95\% D) with 2a (Scheme 4). Deuterated position was determined by ${ }^{1} \mathrm{H}$ NMR after deboranation and subsequent oxidation of the two phosphino


Fig. 1. ORTEP drawings of ( $R_{\mathrm{P}, ~}, \mathrm{R}$-3a (left) and ( $R, R$ )-4aa (right). Hydrogens are omitted for clarity.

Table 1
tele-Substitution of 3b with (S)-2a under various quenching conditions ${ }^{\text {a }}$



| Entry | Acid | Temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Time $(\mathrm{h})$ | Yield $(\%)^{\text {b }}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $1 \mathrm{M} \mathrm{HCl} \mathrm{aq}^{\mathrm{c}}$ | 0 | 0.5 | 22 |
| 2 | $1 \mathrm{M} \mathrm{HCl} / \mathrm{MeOH}$ | 0 | 0.5 | 8 |
| 3 | $16 \mathrm{M} \mathrm{HBF}_{4} \mathrm{aq}$. | 0 | 0.5 | 18 |
| 4 | $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ | 0 | 0.5 | 28 |
| 5 | $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ | 0 | 0.5 | 3 |
| 6 | TfOH | 0 | 0.5 | 44 |
| 7 | TfOH | -40 | 3 | 66 |
| $8^{\text {d }}$ | TfOH | -78 | 24 | 79 |

${ }^{\text {a }}$ All reactions were carried out with 0.2 mmol of 3 b and 3.0 equiv. of 2 a in 0.4 mL of THF and quenched with 3.0 equiv. of acid unless otherwise noted.
${ }^{\mathrm{b}}$ Isolated yield.
${ }^{\text {c }}$ Excess amount of HCl was used.
${ }^{\text {d }} 1.4 \mathrm{~mL}$ of THF was used.
groups. In the coupling product, the deuterium atom was found at the ortho position to dicyclohexyloxophosphorano group without decrease of deuteration ratio. This result strongly indicates that this meta-tele-substitution reaction proceeds via a 1,5-hydrogen shift [6]. This is also supported by the fact that the chemical yield of ( $S_{\mathrm{P}}$ )-D-4ab (28\%) was much lower than that obtained from nondeuterated 3b ( $86 \%$ yield, entry 7 in Table 2). This would indicate that the shift of hydrogen/deutrium occurs as the rate-determining step of this transformation. Next, we employed deuterated trifluoromethanesulfonic acid in the reaction. Although the para-disubstituted product was isolated in $39 \%$ yield in its dechromination form, deuterium was not detected in the product (Scheme 5). This implies that the proton acid would promote 1,5-hydrogen migration or elimination of the fluoride anion, rather than protonate the benzene core.

Based on the results mentioned above, the mechanism of the acid-mediated formation of the meta-tele-substitution product was proposed as depicted in Fig. 2. Nucleophilic attack takes place at the para-position to the boranatophosphino group on the arenechromium complex, due to the steric hindrance and the conjuga-

Table 2
tele-Substitution with various substrates ${ }^{\text {a }}$


| Entry | 3 | $R^{1}$ | $R^{2}$ | 2 | $R^{3}$ | $R^{4}$ | 6 | Yield (\%) ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 a | $t$-Bu | Me | 2a | $t$-Bu | Me | 6aa | 73 |
| 2 | 3a | $t$-Bu | Me | 2b | Cy | Cy | 6ab | 11 |
| 3 | 3a | $t-\mathrm{Bu}$ | Me | 2 c | Cy | Me | 6ac | 70 |
| 4 | 3a | $t$-Bu | Me | 2d | $n-\mathrm{Bu}$ | $n-\mathrm{Bu}$ | 6ad | 84 |
| 5 | 3a | $t$-Bu | Me | 2 f | $t$-Bu | $t$-Bu | 6af | 28 |
| 6 | 3a | $t-\mathrm{Bu}$ | Me | 2 h | 1-Ad | Me | 6ah | 59 |
| 7 | 3b | Cy | Су | 2a | $t$-Bu | Me | 6ab | 86 |
| 8 | 3d | $n-\mathrm{Bu}$ | $n-\mathrm{Bu}$ | 2a | $t-\mathrm{Bu}$ | Me | 6ad | 70 |
| 9 | 3d | $n-\mathrm{Bu}$ | $n-\mathrm{Bu}$ | 2a | $t$-Bu | Me | Gae | 79 |
| 10 | 3 e | iPr | iPr | 2a | $t$-Bu | Me | 6 ae | 48 |
| 11 | 3 f | $t-\mathrm{Bu}$ | $t-\mathrm{Bu}$ | 2a | $t$-Bu | Me | 6af | 62 |
| 12 | 3 g | Ph | Ph | 2a | $t-\mathrm{Bu}$ | Me | 6 ag | 83 |

${ }^{\text {a }}$ All reactions were carried out with 0.1 mmol of 3 and 3.0 equiv. of 2 in 0.7 mL of THF and then treated with 3.0 equiv. of TfOH.
${ }^{\mathrm{b}}$ Isolated yield.

(SP)-3-D-7ab: 46\% yield >95\% D (1:1 mixture of diastereomers)

Scheme 4. A labeling study with rac-5-D-3b.
tively electron-withdrawing nature of the substituent. The Meisenheimer-type intermediate thus formed undergoes subsequent 1,5 -hydrogen migration before (path $A$ ) or after (path $B$ ) protonation of the fluoro group. In path A, hydrogen migration proceeds slowly and takes a longer reaction time to obtain the product in high yield. On the other hand, the reaction via path $B$ would proceed rapidly because of the acceleration of the hydrogen migration by protonation of the fluoro group [7]. Treatment of the Meisenheimer-type intermediate with weak acid might be insufficient to protonate the fluoro group and allow the elimination of the phosphorus nucleophile required to regenerate the starting materials. The direct protonation of the benzene core is also plausible (path C). In this case, syn-elimination of HF from the later intermediate have to be involved because deuterium was not incorporated in the product after treatment of the reaction with trifluoromethanesulfonic acid-D.


Scheme 5. A labeling study with TfOD.


Fig. 2. Proposed mechanism of the acid-mediated meta-tele-substitution.

## 3. Conclusion

The coupling reaction with 2-(boranatophosphino)fluorobenzenechromium complexes and various lithiated secondary phos-phine-boranes afforded para-substituted bis(boranatophosphino) benzenechromiums in moderate to high yield according to meta-tele- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ manner. It was revealed that this transformation took place via 1,5 -hydrogen migration and subsequent elimination of HF. Acid treatment is the key step for the effective formation of the product.

## 4. Experimental

### 4.1. General

All manipulations were carried out under nitrogen atmosphere. NMR spectra were recorded on a JEOL JNM-ECX ( 400 MHz for ${ }^{1} \mathrm{H}$, 162 MHz for ${ }^{31} \mathrm{P}$, and 100 MHz for ${ }^{13} \mathrm{C}$ ). Chemical shifts were reported in $\delta \mathrm{ppm}$ referenced to an internal tetramethylsilane standard for ${ }^{1} \mathrm{H}$ NMR, and to an external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ standard for ${ }^{31} \mathrm{P}$ NMR. Residual $\mathrm{CHCl}_{3}\left(\delta 77.0\right.$ for ${ }^{13} \mathrm{C}$ ) was used as internal reference for ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$ unless otherwise noted. IR spectra were recorded on a JASCO FT/IR-6300. Optical rotations were measured with a JASCO P1030 polarimeter with a sodium lamp. MS (ESI) spectra were obtained on JEOL JMS-T100LC spectrometers. HPLC analyses were performed on a Hitachi L-2130 pump, and L-2450 Diode Array detector with a chiral column. X-ray crystal structure data were collected using a Bruker SMART APEX II diffractometer with Mo $\mathrm{K} \alpha$ radiation. All reagents were obtained from commercial sources and used without further purification. All solvents were freshly distilled. Compound 1, $(S)$-2a, $\left(R_{\mathrm{P}}, S\right)$ - $\mathbf{3 a},\left(R_{\mathrm{P}}, R\right)$-3a, and $\left(R_{\mathrm{P}}\right)$-5a were prepared according to the literature procedure [2].
4.2. General procedure for the preparation of 2-(boranatophosphino) fluorobenzenetricarbonylchromium (3b-g)

To a solution of sec-phosphine-borane ( 2.2 equiv.) in THF was added sec-BuLi ( 1.0 M cyclohexane and $n$-hexane solution, 2.2 equiv.) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere, and the reaction mixture was stirred for 1 h . To the solution was added $\mathbf{1}$ (1.0 equiv.) in THF at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 20 h . The reaction mixture was diluted with water and extracted with $\mathrm{CHCl}_{3}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ( $n$-hexane/EtOAc $=5 / 1-3 / 1$ ) to give 2-(boranatophosphino)fluorobenzenetricarbonylchromium.

### 4.2.1. 2-(Boranatodicyclohexylphosphino) <br> fluorobenzenetricarbonylchromium (3b)

Yield: $95 \%$ as a yellow solid; mp. $202{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.06(\mathrm{dt}, J=3.64 \mathrm{~Hz}, 6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~m}$, $1 \mathrm{H}), 5.20(\mathrm{t}, J=6.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dt}, J=3.20,5.96 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.55$ $(\mathrm{m}, 7 \mathrm{H}), 1.39-1.10(\mathrm{~m}, 8 \mathrm{H}), 1.0-0.1(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 230,148(\mathrm{~d}, J=260 \mathrm{~Hz}), 99.1(\mathrm{dd}, J=6.67,124 \mathrm{~Hz})$, 94.2 (d, $J=8.59 \mathrm{~Hz}$ ), 84.2 (d, $J=7.63 \mathrm{~Hz}$ ), 78.9 (dd, $J=19.0$, $33.4 \mathrm{~Hz}), 76.9(\mathrm{dd}, J=23.8,62.9 \mathrm{~Hz}), 33.9(\mathrm{~d}, J=27.6 \mathrm{~Hz}), 32.6(\mathrm{~d}$, $J=31.1 \mathrm{~Hz}$ ), $27.6(\mathrm{~d}, J=5.05 \mathrm{~Hz}), 27.4,27.1,27.0,26.9,26.9,26.8$, 26.7, 26.6, 25.9; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 37.2$ (d, $J=60.4 \mathrm{~Hz}$ ); IR (KBr) 2937, 3857, 2410, 1970, $1891 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z$ Calc. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{BClCrFO}_{3} \mathrm{P}(\mathrm{M}+\mathrm{Cl})^{-}$: 477.1025. Found: 477.1015; Anal. Calc. for: C, 57.03; H, 6.61. Found: C, 57.06; H, 6.67\%.

### 4.2.2. 2-((S)-Boranatocyclohexylmethylphosphino)

## fluorobenzenetricarbonylchromium (3c)

Yield: $21 \%$ as a yellow solid; mp. $143-145^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}=35.5$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.99(\mathrm{dd}, J=6.88,10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.70(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=5.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H})$, $2.12(\mathrm{q}, J=1.24 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (d, $J=9.60 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.18(\mathrm{~m}, 5 \mathrm{H}), 1.1-0.2(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 230,149(\mathrm{~d}, J=264 \mathrm{~Hz}), 98.2,94.5$ (d, $J=8.00 \mathrm{~Hz}), 84.0(\mathrm{~d}, J=8.40 \mathrm{~Hz}), 81.0(\mathrm{dd}, J=18.4,39.1 \mathrm{~Hz}), 76.6$ (d, $J=23.0 \mathrm{~Hz}$ ), 34.6 (d, $J=34.5 \mathrm{~Hz}$ ), 26.8, 26.6, 26.1, 26.0, 25.6, $9.36(\mathrm{~d}, J=38.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ( $\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 22.6$; IR ( KBr ) 3104, 2931, 2855, 2342, 1972,1885 $\mathrm{cm}^{-1}$; HRMS (ESI): $m / z$ Calc. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BClCrFO}_{3} \mathrm{P}(\mathrm{M}+\mathrm{Cl})^{-}: 409.0399$. Found: 409.0396.

### 4.2.3. Epi-3c

Yield: $24 \%$ as a yellow solid; mp. $141-144^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}=-65.3$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.08(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~m}$, $1 \mathrm{H}), 5.22(\mathrm{t}, J=5.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{q}, J=1.28 \mathrm{~Hz}$, $1 \mathrm{H}), 1.9-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.72$ (d, $J=10.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 1 \mathrm{H}), 1.41$ $\left.(\mathrm{m}, 2 \mathrm{H}), 1.3-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.1-0.2(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 230,149(\mathrm{~d}, J=263 \mathrm{~Hz}), 94.3$ (d, $J=8.00 \mathrm{~Hz}), 84.0(\mathrm{~d}, J=8.00 \mathrm{~Hz}), 80.8(\mathrm{dd}, J=18.4,40.2 \mathrm{~Hz}), 76.6$ (d, $J=23.0 \mathrm{~Hz}$ ), 35.1 (d, $J=34.5 \mathrm{~Hz}$ ), 26.8, 26.6, 26.5, 26.4, 23, 25.6 $11.1(\mathrm{~d}, J=44.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 25.7$ (d, $J=60.7 \mathrm{~Hz}$ ); IR (KBr) 3073, 2941, 2864, 2383, 1975, 1900, $1884 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ Calc. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BClCrFO}_{3} \mathrm{P}(\mathrm{M}+\mathrm{Cl})^{-}$: 409.0399. Found: 409.0396.

### 4.2.4. 2-(Boranatodi-n-butylphosphino) <br> fluorobenzenetricarbonylchromium (3d)

Yield: $53 \%$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.11$ (dt, $J=3.68,6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=5.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~m}$, $1 \mathrm{H}), 2.10-1.79(\mathrm{~m}, 5 \mathrm{H}), 1.59-1.23(\mathrm{~m}, 7 \mathrm{H}), 0.96(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.10(\mathrm{~m}, 8 \mathrm{H}), 1.1-0.1(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 150.1,147.5,99.1(\mathrm{~d}, J=7.62 \mathrm{~Hz}), 94.5$
(d, $J=7.63 \mathrm{~Hz}), 84.2$ (d, $J=6.67 \mathrm{~Hz}), 80.6$ (dd, $J=18.1,40.0 \mathrm{~Hz}), 27.6$ (d, $J=36.2 \mathrm{~Hz}), 25.4(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 24.5(\mathrm{~d}, J=30.5 \mathrm{~Hz}), 24.2$ (dd, $J=3.81,13.4 \mathrm{~Hz}), 13.6 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 24.2(\mathrm{~d}$, $J=60.8$ ); HRMS (ESI): m/z Calc. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{B1ClCrO}_{3} \mathrm{P}(\mathrm{M}+\mathrm{Cl})^{-}$ 425.0712. Found: 425.0702.

### 4.2.5. 2-(Boranatodiisopropylphosphino) fluorobenzenetricarbonylchromium (3e)

Yield: $79 \%$ as a yellow solid; mp. $141-143{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 6.08(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=6.40 \mathrm{~Hz}, 1 \mathrm{H})$, $4.82(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{dd}, J=6.88$, $16.5 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.36 (dd, $J=6.88,16.0 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.17 (dd, $J=6.88$, $16.0 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.04 (ddd, $J=1.84,6.88,14.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), $0.9-0.14$ (m, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 149,147,98.8$ (dd, $J=6.68$, 12.4 Hz ), 94.3 (d, $J=7.63 \mathrm{~Hz}$ ), $84.3(\mathrm{~d}, J=6.67 \mathrm{~Hz}), 78.3$ (dd, $J=19.0,32.4 \mathrm{~Hz}$ ), 23.7 (d, $J=4.77 \mathrm{~Hz}$ ), 23.6, 23.5 (d, $J=4.76 \mathrm{~Hz}$ ), 23.3, $17.6(\mathrm{dd}, J=25.8,25.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta$ 45.8 (d, $J=65.0 \mathrm{~Hz}$ ); $\mathrm{IR}(\mathrm{KBr}) 3102,2979,2392,1975,1930 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ Calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BClCrO}_{3} \mathrm{P}(\mathrm{M}+\mathrm{Cl})^{-}$: 397.0399 . Found: 397.0412; Anal. Calc. for: C, 49.75; H, 5.85. Found: C, 49.73; H, 5.39\%.

### 4.2.6. 2-(Boranatodi-tert-butylphosphino)

 fluorobenzenetricarbonylchromium (3f)Yield: $85 \%$ as a yellow solid; mp. $180-182{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 6.44(\mathrm{dt}, J=3.68,7.32 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{t}$, $J=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dt}, J=3.68,6.44 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=1.84$, $14.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.1-0.3(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 230(\mathrm{~s}), 147.2(\mathrm{dd}, J=3.21,263 \mathrm{~Hz}), 100.2$ (dd, $J=7.50,11.8 \mathrm{~Hz}$ ), 94.5 (d, $J=7.50 \mathrm{~Hz}$ ), 80.0 (dd, $J=22.5$, $25.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), $76.5(\mathrm{~d}, J=25.7 \mathrm{~Hz}), 35.4(\mathrm{~d}, J=2.10 \mathrm{~Hz}), 35.2$ (d, $J=4.30 \mathrm{~Hz}), 29.5(\mathrm{~m}), 28.8(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ( $\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 60.0$ (d, $J=64.8$ ); IR (KBr) 3080, 2969, 2400, 1976, $1906 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z$ Calc. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BClCrO}_{3} \mathrm{P}(\mathrm{M}+\mathrm{Cl})^{-}$: 425.0712. Found 425.0714; Anal. Calc. for: C, 52.33; H, 6.46. Found: C, 52.35; H, 6.39\%.

### 4.2.7. 2-(Boranatodiphenylphosphino)

## fluorobenzenetricarbonylchromium (3g)

Yield: $69 \%$ as a yellow solid; $\mathrm{mp} 145-147^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.40(\mathrm{~m}, 8 \mathrm{H}), 6.19(\mathrm{t}, J=6.88 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{t}, \mathrm{J}=5.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 1.7-0.7$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 150,148,134$ (d, $J=10.5 \mathrm{~Hz}), 132(\mathrm{~d}, J=9.54 \mathrm{~Hz}), 132,131,129(\mathrm{~d}, J=10.5 \mathrm{~Hz})$, 129 (d, $J=11.4$ ), 128, 98.7 (dd, $J=4.77,14.3 \mathrm{~Hz}$ ), 94.4 (d, $J=7.63 \mathrm{~Hz}), 83.5(\mathrm{~d}, J=7.63 \mathrm{~Hz}), 81.9(\mathrm{dd}, J=17.2,45.7 \mathrm{~Hz}), 75.9$ (d, $J=21.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 22.86(\mathrm{~d}$, $J=24.1 \mathrm{~Hz}$ ); IR (KBr) 3089, 2384, 1984, $1926 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z$ Calc. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BClCrFO}_{3} \mathrm{P}(\mathrm{M}+\mathrm{Cl})^{-}: 465.0086$. Found: 465.0083; Anal. Calc. for: C, 58.64; H, 3.98. Found: C, 58.63; H, 3.80\%.

### 4.3. General procedure for the tele $-S_{N} A r$

To a solution of sec-phosphine-borane ( 0.3 mmol ) in THF $(0.5 \mathrm{~mL})$ was added a solution of sec-BuLi ( $0.3 \mathrm{~mL}, 1.0 \mathrm{M}$ cyclohexane solution, 0.3 mmol ) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere, and the reaction mixture was stirred for 1 h . To the solution was added 2-boranatophosphinofluorobenzenetricarbonylchromium ( 0.1 mmol ) in THF $(0.2 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 5 h . Trifluoromethanesulfonic acid ( 0.3 mmol ) was then added slowly to the solution at $-78^{\circ} \mathrm{C}$. After stirring at intact temperature for 24 h , the mixture was diluted with water and extracted with $\mathrm{CHCl}_{3}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting yellow solid was dissolved in chloroform, and the solution was exposed to air under
irradiation of light for 3 h . After removal of green precipitates by filtration, the filtrate was concentrated under reduced pressure, and the residue was subjected to column chromatography on silica gel ( $n$-hexane/EtOAc $=5 / 1$ ) to give 1,4 -bis(boranatophosphino) benzene.

### 4.3.1. 1,4-Bis(boranato-tert-butylmethylphosphino)benzene (6aa)

Yield: $73 \%$ as a A white solid; $\mathrm{mp} 230^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}^{23}=-16.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.76(\mathrm{~m}$, 4 H ), 1.57 (d, $J=9.64 \mathrm{~Hz}, 6 \mathrm{H}$ ), 1.09 (d, $J=14.2 \mathrm{~Hz}, 18 \mathrm{H}$ ), $1.0-0.2$ ( $\mathrm{m}, 6 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 132.6(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}), 131.6$ (d, $J=45.8 \mathrm{~Hz}$ ), $28.7(\mathrm{~d}, J=32.4 \mathrm{~Hz}), 25.3(\mathrm{~d}, J=2.90 \mathrm{~Hz}), 5.26(\mathrm{~d}$, $J=37.2$ ); ${ }^{31} \mathrm{P}$ NMR ( $\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 33.9$ (m); IR (KBr) 2954, 2866, $2370 \mathrm{~cm}^{-1}$; Anal. Calc. for: C, 61.99; H, 11.05. Found: C, 61.75; H, 11.11\%.

### 4.3.2. 1-(Boranato-tert-butylmethylphosphino)-

## 4-(boranatodicyclohexylphosphino)benzene ( $\mathbf{6 a b}$ )

Yield: $86 \%$ as a white solid; $\mathrm{mp} 300^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{D}^{24}=-3.7$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.76(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H})$, $1.94(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.67(\mathrm{~m}, 6 \mathrm{H}), 1.59(\mathrm{~d}, J=9.60 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~m}$, $2 \mathrm{H}), 1.34-1.15(\mathrm{~m}, 10 \mathrm{H}), 1.11$ (d, $J=6.80 \mathrm{~Hz}, 9 \mathrm{H}$ ), 1.0-0.1 (br, $6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 133.1(\mathrm{t}, J=8.58 \mathrm{~Hz}), 132.7(\mathrm{t}$, $J=8.58 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=47.7 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=44.8 \mathrm{~Hz}), 31.4(\mathrm{~d}$, $J=21.9 \mathrm{~Hz}), 31.1(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 28.8$ (d, $J=32.4 \mathrm{~Hz}), 26.8,26.7$, 26.6, 26.3 (d, $J=5.72 \mathrm{~Hz}$ ), 25.91, 25.86, 5.24 (d, $J=37.2 \mathrm{~Hz}$ ); ${ }^{31} \mathrm{P}$ NMR ( $\left.\mathrm{CDCl}_{3}, \quad 162 \mathrm{MHz}\right) ~ \delta \quad 27.9(\mathrm{~d}, \quad J=60.7 \mathrm{~Hz}), 26.8$ (d, $J=65.1 \mathrm{~Hz}$ ); IR (KBr) 2938, 3855, $2390 \mathrm{~cm}^{-1}$; MS (ESI): m/z 439.3 $(\mathrm{M}+\mathrm{Cl})^{-}$; Anal. Calc. for: C, 67.81; H, 10.90. Found: C, 68.32; H, 11.19\%.

### 4.3.3. 1-(Boranato-tert-butylmethylphosphino)-4-(boranatocyclohexylmethylphosphino)benzene (6ac)

Yield: $70 \%$ as a white solid; $\mathrm{mp} 179-180^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}=-14.7(c 0.3$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.77(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.74(\mathrm{~m}$, $4 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=9.60 \mathrm{~Hz}, 3 \mathrm{H}), 1.54$ (d, $J=10.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.17(\mathrm{~m}, 5 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 9 \mathrm{H}), 1.1-$ 0.1 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 132.9$ (dd, $J=8.58$, $8.58 \mathrm{~Hz}), 132.7(\mathrm{~d}, J=49.6 \mathrm{~Hz}), 131.7(\mathrm{dd}, J=8.58,8.58 \mathrm{~Hz}), 131.6$ (d, $J=48.6 \mathrm{~Hz}$ ), $35.7(\mathrm{~d}, J=35.3 \mathrm{~Hz}), 28.8(\mathrm{~d}, J=32.4 \mathrm{~Hz}), 26.5$, 26.4, 25.7, 25.3, $7.69(\mathrm{~d}, J=38.1 \mathrm{~Hz}), 5.26(\mathrm{~d}, J=36.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ( $\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 34.0(\mathrm{~m}), 32.5(\mathrm{~m})$; IR ( KBr ) 2930, 2857, $2388 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ Calc. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~B}_{2} \mathrm{ClP}_{2}(\mathrm{M}+\mathrm{Cl})^{-}$: 371.2167. Found: 371.2168.

### 4.3.4. 1-(Boranato-tert-butylmethylphosphino)-

4-(boranatodi-n-butylphosphino)benzene (6ad)
Yield: $84 \%$ as a white solid; $\mathrm{mp} 168{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}=-7.3$ (c 0.3, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.79(\mathrm{~m}, 4 \mathrm{H}), 1.9-1.79(\mathrm{~m}$, $4 \mathrm{H}), 1.59(\mathrm{~d}, J=9.60 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}) 1.38-,1.28(\mathrm{~m}$, 6 H ), 1.11 ( $\mathrm{d}, J=13.8 \mathrm{~Hz}, 9 \mathrm{H}$ ), $0.87(\mathrm{t}, J=7.32 \mathrm{~Hz}, 6 \mathrm{H}) 0.9-0.2(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 133(\mathrm{dd}, J=8.60,8.60 \mathrm{~Hz}), 133$ (d), 132 (dd, $J=8.60,8.60 \mathrm{~Hz}), 132$ (d, $J=47.7 \mathrm{~Hz}$ ), 28.8 (d, $J=32.4 \mathrm{~Hz}$ ), 25.4, 25.3, 25.2, 24.95, 24.95, 24.9, 24.4, 24.3, 13.6, $5.25(\mathrm{~d}, \mathrm{~J}=36.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 27.0(\mathrm{~d}$, $J=65.0 \mathrm{~Hz}), 16.6(\mathrm{~d}, J=56.4 \mathrm{~Hz})$; $\mathrm{IR}(\mathrm{KBr}) 2957,2869,2378 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z$ Calc. for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{~B}_{2} \mathrm{ClP}_{2}(\mathrm{M}+\mathrm{Cl})^{-}: 387.2480$. Found 387.2474.; Anal. Calc. for: C, 64.81; H, 11.45. Found: C, 64.89; H, 11.26\%.

### 4.3.5. 1-(Boranato-tert-butylmethylphosphino)-4-(boranatodiisopropylphosphino)benzene (6ae)

Yield: $48 \%$ as a white solid; $\mathrm{mp} 179-180^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}=-10.5(c 0.5$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.79(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~m}, 2 \mathrm{H})$, 1.59 (d, $J=9.64 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 9 \mathrm{H}), 1.20-1.02$ (m, $12 \mathrm{H}), 1.0-0.1(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 133.1$ (dd,
$J=7.60,7.60 \mathrm{~Hz}$ ), 132.7 (dd, $J=8.6,8.6 \mathrm{~Hz}), 131.7$ (d, $J=46.7 \mathrm{~Hz}$ ), 129.4 (d, $J=44.8 \mathrm{~Hz}$ ), 28.7 (d, $J=32.4 \mathrm{~Hz}$ ), 25.2, $22.0,16.8,5.23$ (d, $J=36.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ( $\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 35.7(\mathrm{~d}, J=65.0 \mathrm{~Hz})$, 26.9 (d, $J=69.4 \mathrm{~Hz}$ ); IR (KBr) 2971, 2871, $2380 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ Calc. for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{~B}_{2} \mathrm{ClP}_{2}(\mathrm{M}+\mathrm{Cl})^{-}$: 359.2167 . Found: 359.2168.; Anal. Calc. for: C, 63.01; H, 11.20. Found: C, 62.93; H, 10.94\%.

### 4.3.6. 1-(Boranato-tert-butylmethylphosphino)-

4-(boranatodi-tert-butylphosphino)benzene (6af)
Yield: $62 \%$ as a white solid; mp $167-169{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{24}=-9.0$ (c 0.5, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.08(\mathrm{t}, \mathrm{J}=8.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.79$ (t, $J=8.68 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=9.64 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $18 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 9 \mathrm{H}), 1.0-0.1(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $100 \mathrm{MHz}) \delta 134.7,132.2(\mathrm{t}, J=8.58 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=18.1 \mathrm{~Hz})$, 131.0 (d, $J=7.63 \mathrm{~Hz}), 33.4(\mathrm{~d}, J=4.77 \mathrm{~Hz}), 33.1(\mathrm{~d}, J=4.77 \mathrm{~Hz})$, 28.9 (d, $J=2.86 \mathrm{~Hz}), 28.5,25.3$ (d, $J=2.86 \mathrm{~Hz}), 5.19$ (d, $J=36.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 46.2(\mathrm{~d}, J=82.4 \mathrm{~Hz})$, 26.6 (d, $J=75.8 \mathrm{~Hz}$ ); IR (KBr) 2971, $2385 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ Calc. for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{~B}_{2} \mathrm{ClP}_{2}(\mathrm{M}+\mathrm{Cl})^{-}$: 387.2480. Found: 387.2484. Anal. Calc. for: C, 64.81; H, 11.45. Found: C, 65.06; H, 11.27\%.

### 4.3.7. 1-(Boranato-tert-butylmethylphosphino)-

## 4-(boranatodiphenylphosphino)benzene (6ag)

Yield: $83 \%$ as a white solid; mp. $144-145{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}=14.8$ (c 0.4, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.76(\mathrm{t}, \mathrm{J}=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-$ $7.50(\mathrm{~m}, 8 \mathrm{H}), 7.45(\mathrm{t}, J=7.32 \mathrm{~Hz}, 4 \mathrm{H}), 1.57(\mathrm{~d}, J=9.60 \mathrm{~Hz}, 3 \mathrm{H}), 1.10$ $(\mathrm{d}, J=17.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.8-0.2(\mathrm{br}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $134,133.3$ (d, $J=9.53 \mathrm{~Hz}), 133.1(\mathrm{t}, J=9.54 \mathrm{~Hz}), 132.8(\mathrm{t}$, $J=9.54 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=44.8 \mathrm{~Hz}), 131.7,28.8(\mathrm{~d}, J=32.4 \mathrm{~Hz}), 25.3$ (d, $J=2.86 \mathrm{~Hz}), 5.26(\mathrm{~d}, J=37.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta$ $27.2(\mathrm{~d}, J=45.5 \mathrm{~Hz}), 21.8(\mathrm{~d}, J=32.1 \mathrm{~Hz})$; IR ( KBr ) 2963,2902 , 2381, 2341, $2264 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ Calc. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~B}_{2} \mathrm{Cl}_{1} \mathrm{P}_{2}$ $(\mathrm{M}+\mathrm{Cl})^{-}$: 427.1854. Found: 427.1850. Anal. Calc. for: C, 70.46; H, 8.23. Found: C, 70.47; H, 7.98\%.

### 4.3.8. 1-(Boranato-tert-butylmethylphosphino)-

## 4-(boranato-1-adamantylmethylphosphino)benzene ( $\mathbf{6 a h}$ )

Yield: $59 \%$ as a white solid; mp 277-279 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}=-12.4$ ( $c$ $\left.0.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.75(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{~s}$, $3 \mathrm{H}), 1.27(\mathrm{~s}, 6 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 3 \mathrm{H})$, 1.53 (d, $J=9.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.12 (d, $J=14.2 \mathrm{~Hz}, 9 \mathrm{H}$ ), $1.1-0.2$ (m, 6 H ); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 132.8(\mathrm{t}, J=9.53 \mathrm{~Hz}), 132.5(\mathrm{t}$, $J=8.58 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=46.7 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=46.7 \mathrm{~Hz}), 36.3$, 35.9, $31.4(\mathrm{~d}, \quad J=32.4 \mathrm{~Hz}), 21.8 \quad(\mathrm{~d}, \quad J=32.4 \mathrm{~Hz}), 27.7$ (d, $J=8.58 \mathrm{~Hz}), 25.3(\mathrm{~d}, J=1.90 \mathrm{~Hz}), 5.24(\mathrm{~d}, J=37.2 \mathrm{~Hz}), 3.70(\mathrm{~d}$, $J=37.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 26.9(\mathrm{~d}, J=60.8 \mathrm{~Hz})$, 23.4 (d, $J=73.8 \mathrm{~Hz}$ ); IR (KBr) 2905, 2851, $2376 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ Calc. for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~B}_{2} \mathrm{ClP}_{2}(\mathrm{M}+\mathrm{Cl})^{-}: 409.0399$. Found: 409.0396.

### 4.4. Preparation of 2-boranatodicyclohexylphosphino- <br> 5-deuteriofluorobenzenetricarbonylchromium (rac-5-D-3b)

### 4.4.1. 1-Dicyclohexylphosphino-

## 2,3-difluorobenzenetricarbonylchromium (rac-8)

To a solution of $\mathbf{1}$ ( $707 \mathrm{mg}, 2.8 \mathrm{mmol}$ ) in $\mathrm{Et}_{2} \mathrm{O}(28 \mathrm{~mL})$ was added $n$-BuLi ( 1.8 mL of $1.6 \mathrm{M} n$-hexane solution, 2.8 mmol ) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring for 0.5 h , chlorodicyclohexylphosphine ( $630 \mu \mathrm{~L}, 2.8 \mathrm{mmol}$ ) was added at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h at intact temperature. The reaction was quenched with 1 M HCl aq., and the mixture was extracted three times with EtOAc. The combined extracts were washed with saturated $\mathrm{NaHCO}_{3}$, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was chromatographed on silica gel ( $n$-hexane/EtOAc $=10$ / 1) to give rac- $\mathbf{8}$ ( $627 \mathrm{mg}, 50 \%$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.67(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{t}$,
$J=6.44 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (t, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{t}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.92-1.76$ (m, 7H), 1.69 (d, $J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.1$ (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 131(\mathrm{~d}, J=269 \mathrm{~Hz}), 133$ (d, $J=269 \mathrm{~Hz}), 93.4(\mathrm{dd}, J=4.76,21.9 \mathrm{~Hz}), 90.5(\mathrm{dd}, J=20.0,47.7 \mathrm{~Hz}$ ), 84.9, 81.7 (d, $J=17.1 \mathrm{MHz}$ ), 33.4, 33.0, 30.2, 30.0, 29.9, 29.8, 27.3, 27.2, 27.0, 26.9, 26.3, 26.2; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 7.92(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}$ ).

### 4.4.2. 1-Dicyclohexylphosphino-4-duterio-

2,3-difluorobenzenetricarbonylchromium (rac-9)
To a solution of rac-8 ( $722 \mathrm{mg}, 1.6 \mathrm{mmol}$ ) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added $n$-BuLi ( 1.2 mL of $1.6 \mathrm{M} n$-hexane solution, 1.9 mmol ) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring for 0.5 h , the reaction was quenched with $\mathrm{D}_{2} \mathrm{O}(10 \mathrm{~mL})$, and the mixture was extracted three times with EtOAc. The combined extracts were washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was chromatographed on silica gel ( $n$-hexane/EtOAc $=10 / 1$ ) to give rac-9 $(641$ $\mathrm{mg}, 88 \%$ yield, $>99 \% \mathrm{D})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 5.67(\mathrm{~m}, 0.01 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.15(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{t}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.76(\mathrm{~m}$, $7 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.1(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $162 \mathrm{MHz}) \delta 7.92(\mathrm{~d}, J=13.0 \mathrm{~Hz})$.

### 4.4.3. 2-Dicyclohexylphosphino-

5-duteriofluorobenzenetricarbonylchromium (rac-10)
A solution of rac-9 ( $641 \mathrm{mg}, 1.43 \mathrm{mmol}$ ) in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was slowly added to a stirred suspension of lithium aluminum hydride ( $270 \mathrm{mg}, 7.2 \mathrm{mmol}$ ) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at intact temperature for 14 h . The reaction mixture was diluted with EtOAc, and washed with water, and the aqueous phase was extracted twice with EtOAc. The combined extracts were washed with saturated $\mathrm{NaHCO}_{3}$, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was chromatographed on silica gel ( $n$-hexane/EtOAc $=10$ / 1) to give rac- $\mathbf{1 0}$ ( $162 \mathrm{mg}, 26 \%$ yield, $>95 \% \mathrm{D}$ ) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.54(\mathrm{~m}, 1.02 \mathrm{H}), 5.25(\mathrm{~d}, J=5.04 \mathrm{~Hz}$, $1 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 2.1-1.6(\mathrm{~m}, 12 \mathrm{H}), 1.4-1.1(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 5.44(\mathrm{~d}, J=26.0 \mathrm{~Hz})$.

### 4.4.4. rac-5-D-3b

To a solution of rac-10 ( $161 \mathrm{mg}, 0.4 \mathrm{mmol}$ ) in THF ( 1 mL ) was added $\mathrm{BH}_{3}$.THF complex ( 0.4 mL of 1.0 M THF solution, 0.4 mmol ) at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring at room temperature for 2 h , the reaction was quenched with 1 M HCl aq., and the mixture was extracted three times with EtOAc. The combined extracts were washed with saturated $\mathrm{NaHCO}_{3}$, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was chromatographed on silica gel ( $n$-hexane/ EtOAc $=10 / 1$ ) to give rac-5-D-3b $(154 \mathrm{mg}, 87 \%$ yield, $>95 \% \mathrm{D})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.06(\mathrm{dt}, J=3.64$, $6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~m}, 0.05 \mathrm{H}), 5.20(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}$, $J=3.20,5.96 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00-$ $1.89(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.39-1.10(\mathrm{~m}, 8 \mathrm{H}), 1.0-0.1(\mathrm{~m}$, $3 \mathrm{H})$; ${ }^{31} \mathrm{P}$ NMR ( $\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 37.2(\mathrm{~d}, J=60.4 \mathrm{~Hz})$.

### 4.4.5. Procedure for the labeling studies (Scheme 4)

To a solution of (S)-tert-butylmethylphosphine-borane (34.9 $\mathrm{mg}, 0.3 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added sec-BuLi $(0.3 \mathrm{~mL}, 1.0 \mathrm{M}$ cyclohexane and $n$-hexane solution, 0.3 mmol ) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere, and the reaction mixture was stirred for 1 h . To the solution was added rac-5-D-3b ( $45 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), and THF ( 0.2 mL ) at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 40 h . Trifluoromethanesulfonic acid ( $27 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) was then added slowly to the solution at $-78^{\circ} \mathrm{C}$, and the reaction was stirred at intact temperature. After 24 h , the reaction mixture was diluted with


Scheme 6. Preparation of rac-5-D-3b.
water and extracted with $\mathrm{CHCl}_{3}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ( $n$-hexane) EtOAc = 5/1).

A mixture of the purified product ( 27.5 mg ) and 1-methylpyrrolidine ( 2 mL ) was stirred under nitrogen atmosphere at room temperature for 12 h . The volatiles were removed under reduced pressure, and the residue was passed through a column of silica gel with degassed toluene elution. The eluent was evaporated under reduced pressure to give free phosphine. To a solution of free phosphine ( 18 mg ) in EtOH ( 1.0 mL ) was added $\mathrm{H}_{2} \mathrm{O}_{2}$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 10 min at intact temperature. The reaction was quenched with 1 M HCl aq., and the mixture was extracted three times with EtOAc. The combined extracts were washed with saturated $\mathrm{NaHCO}_{3}$, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was chromatographed on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10 / 1\right)$ to give a diastereomeric mixture of 3-D-7ab ( $7.2 \mathrm{mg}, 13 \%$ yield, $>95 \% \mathrm{D}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.74(\mathrm{t}, \mathrm{J}=5.96 \mathrm{~Hz}, 1 \mathrm{H})$, $5.66(\mathrm{t}, J=6.40 \mathrm{~Hz}, 0.48 \mathrm{H}), 5.59(\mathrm{t}, J=6.40 \mathrm{~Hz}, 0.55 \mathrm{H}), 5.05(\mathrm{t}$, $J=5.96 \mathrm{~Hz}, 1 \mathrm{H}), 2.1-1.8(\mathrm{~m}, 10 \mathrm{H}), 1.73$ (d, $J=13.6 \mathrm{~Hz}, 3 \mathrm{H}$ ), $1.5-$ $1.2(\mathrm{~m}, 12 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right)$ $\delta 48.4,43.5$.

### 4.4.6. Procedure for the labeling studies (Scheme 5)

To a solution of ( $S$ )-tert-butylmethylphosphine-borane ( 36 mg , 0.3 mmol ) in THF ( 0.5 mL ) was added sec-BuLi ( $0.3 \mathrm{~mL}, 1.0 \mathrm{M}$ cyclohexane and $n$-hexane solution, 0.3 mmol ) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere, and the reaction mixture was stirred for 1 h . To the solution was added $\mathbf{3 b}(44.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF ( 0.2 mL ) at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 5 h . Trifluoromethanesulfonic acid-D ( $27 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) was then added slowly to the solution at $-78^{\circ} \mathrm{C}$, and the reaction was stirred at intact temperature. After 24 h , the mixture was diluted with water and extracted with $\mathrm{CHCl}_{3}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting yellow solid was dissolved in $\mathrm{CHCl}_{3}$, and the solution was exposed to air under irradiation of light for 3 h . After removal of green precipitates by filtration, the filtrate was concentrated under reduced pressure, and the residue was subjected to column chromatography on silica gel ( $n$-hexane/EtOAc $=5 / 1$ ) to give $\mathbf{6 a b}(15.8 \mathrm{mg}, 39 \%$ yield ) (see Scheme 6).

### 4.4.7. Crystal data of $\left(R_{P}, R\right)$-3a

Crystal dimensions $0.25 \times 0.40 \times 0.50 \mathrm{~mm}^{3} ; \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BCrFO}_{3} \mathrm{P}$, $M_{\mathrm{r}}=348.08$; orthorhombic space group $P 2_{1} 2_{1} 2_{1}, a=9.276(5)$, $b=10.764(6), c=16.627(9) \AA, V=1660.3(15) \AA^{3}, Z=4, D_{\text {calc }}=1.392$
$\mathrm{g} \mathrm{cm}^{-3}, T=120 \mathrm{~K}, 3762$ unique and 3524 observed $[I>2 \sigma(I)]$ reflections, 196 parameters, final $[I>2 \sigma(I)] R_{1}=0.0249, w R_{2}=0.0775$. $S=0.606$. Flack parameter $=-0.011(15), C C D C-685999$.

### 4.4.8. Crystal data of ( $R, R$ )-4aa

Crystal dimensions $0.20 \times 0.20 \times 0.10 \mathrm{~mm}^{3} ; \mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{CrO}_{3} \mathrm{P}_{2}$, $M_{\mathrm{r}}=446.02$; orthorhombic space group $P 2_{1} 2_{1} 2_{1}, a=8.1336(5)$, $b=10.9987(7), c=26.7003(16) \AA, V=2388.6(3) \AA^{3}, \quad Z=4, D_{\text {calc }}=$ $1.240 \mathrm{~g} \mathrm{~cm}^{-3}, \quad T=120 \mathrm{~K}, 4673$ unique and 4391 observed [ $I>2 \sigma(I)]$ reflections, 276 parameters, final $[I>2 \sigma(I)] R_{1}=0.0267$, $w R_{2}=0.0632$. $S=1.029$. Flack parameter $=-0.004(14)$, CCDC686000.

## Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

## Appendix A. Supplementary material

CCDC 685999 and 686000 contain the supplementary crystallographic data from this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

## References

[1] (a) For recent reviews, see: M.F. Semmelhack, in: Transition metal arene complexes: Nucleophilic addition, in: E.W. Abel, F.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 12, Pergamon, New York, 1995, p. 979;
(b) A.R. Pape, K.P. Kaliappan, E.P. Kündig, Chem. Rev. 100 (2000) 2917;
(c) E.P. Kündig, S.H. Pache, Sci. Synth. 2 (2003) 153;
(d) E.P. Kündig (Ed.), Transition Metal Arene p-Complexes in Organic Synthesis: Topic in Organometallic Chemistry, vol. 7, Springer, Heidelberg, 2004; (e) M. Uemura, Org. React. 67 (2006) 217.
[2] K. Katagiri, H. Danjo, K. Yamaguchi, T. Imamoto, Tetrahedron 61 (2005) 4701.
[3] Y. Yamamoto, T. Koizumi, K. Katagiri, Y. Furuya, H. Danjo, T. Imamoto, K. Yamaguchi, Org. Lett. 8 (2006) 6103.
[4] F. Rose-Munch, E. Rose, A. Semra, L. Mignon, J. Garcia-Oricain, C. Knobler, J. Organomet. Chem. 363 (1989) 297.
[5] F.-E. Hong, S.-C. Lo, M.-W. Liou, L.-F. Chou, C.-C. Lin, J. Organomet. Chem. 516 (1996) 123.
[6] (a) W. Lamanna, M. Brookhart, J. Am. Chem. Soc. 102 (1980) 3490;
(b) G.A.M. Munro, P.L. Pauson, Chem. Commun. (1976) 134.
[7] (a) See: for the examples of protonation of fluoro group W.L. Jorgensen, M.E. Cournoyer, J. Am. Chem. Soc. 100 (1978) 5278;
(b) H. Plenio, R. Diodone, Chem. Ber. 130 (1997) 633;
(c) N. Solcá, O. Dopfer, J. Am. Chem. Soc. 125 (2003) 1421;
(d) J.K. Laerdahl, P.U. Civcir, L.B. Andreassen, E. Uggerud, Org. Biomol. Chem. 4 (2006) 135.


[^0]:    * Corresponding author. Tel.: +81 87894 5111; fax: +81 878940181.

    E-mail address: danjo@kph.bunri-u.ac.jp (H. Danjo).

